nn.layers #
fn dropout_layer #
fn dropout_layer[T](ctx &autograd.Context[T], output_shape []int, data DropoutLayerConfig) types.Layer[T]
fn elu_layer #
fn elu_layer[T](ctx &autograd.Context[T], output_shape []int, data EluLayerConfig) types.Layer[T]
fn flatten_layer #
fn flatten_layer[T](ctx &autograd.Context[T], shape []int) types.Layer[T]
fn input_layer #
fn input_layer[T](ctx &autograd.Context[T], shape []int) types.Layer[T]
fn leaky_relu_layer #
fn leaky_relu_layer[T](ctx &autograd.Context[T], output_shape []int) types.Layer[T]
fn linear_layer #
fn linear_layer[T](ctx &autograd.Context[T], input_dim int, output_dim int) types.Layer[T]
fn maxpool2d_layer #
fn maxpool2d_layer[T](ctx &autograd.Context[T], input_shape []int, kernel []int, padding []int, stride []int) types.Layer[T]
fn relu_layer #
fn relu_layer[T](ctx &autograd.Context[T], output_shape []int) types.Layer[T]
fn sigmoid_layer #
fn sigmoid_layer[T](ctx &autograd.Context[T], output_shape []int) types.Layer[T]
fn (DropoutLayer[T]) output_shape #
fn (layer &DropoutLayer[T]) output_shape() []int
fn (DropoutLayer[T]) variables #
fn (_ &DropoutLayer[T]) variables() []&autograd.Variable[T]
fn (DropoutLayer[T]) forward #
fn (layer &DropoutLayer[T]) forward(mut input autograd.Variable[T]) !&autograd.Variable[T]
fn (EluLayer[T]) output_shape #
fn (layer &EluLayer[T]) output_shape() []int
fn (EluLayer[T]) variables #
fn (_ &EluLayer[T]) variables() []&autograd.Variable[T]
fn (EluLayer[T]) forward #
fn (layer &EluLayer[T]) forward(mut input autograd.Variable[T]) !&autograd.Variable[T]
fn (FlattenLayer[T]) output_shape #
fn (layer &FlattenLayer[T]) output_shape() []int
fn (FlattenLayer[T]) variables #
fn (_ &FlattenLayer[T]) variables() []&autograd.Variable[T]
fn (FlattenLayer[T]) forward #
fn (layer &FlattenLayer[T]) forward(mut input autograd.Variable[T]) !&autograd.Variable[T]
fn (InputLayer[T]) output_shape #
fn (layer &InputLayer[T]) output_shape() []int
fn (InputLayer[T]) variables #
fn (_ &InputLayer[T]) variables() []&autograd.Variable[T]
fn (InputLayer[T]) forward #
fn (layer &InputLayer[T]) forward(mut input autograd.Variable[T]) !&autograd.Variable[T]
fn (LeakyReluLayer[T]) output_shape #
fn (layer &LeakyReluLayer[T]) output_shape() []int
fn (LeakyReluLayer[T]) variables #
fn (_ &LeakyReluLayer[T]) variables() []&autograd.Variable[T]
fn (LeakyReluLayer[T]) forward #
fn (layer &LeakyReluLayer[T]) forward(mut input autograd.Variable[T]) !&autograd.Variable[T]
fn (LinearLayer[T]) output_shape #
fn (layer &LinearLayer[T]) output_shape() []int
fn (LinearLayer[T]) variables #
fn (layer &LinearLayer[T]) variables() []&autograd.Variable[T]
fn (LinearLayer[T]) forward #
fn (layer &LinearLayer[T]) forward(mut input autograd.Variable[T]) !&autograd.Variable[T]
fn (MaxPool2DLayer[T]) output_shape #
fn (layer &MaxPool2DLayer[T]) output_shape() []int
fn (MaxPool2DLayer[T]) variables #
fn (layer &MaxPool2DLayer[T]) variables() []&autograd.Variable[T]
fn (MaxPool2DLayer[T]) forward #
fn (layer &MaxPool2DLayer[T]) forward(mut input autograd.Variable[T]) !&autograd.Variable[T]
fn (ReLULayer[T]) output_shape #
fn (layer &ReLULayer[T]) output_shape() []int
fn (ReLULayer[T]) variables #
fn (_ &ReLULayer[T]) variables() []&autograd.Variable[T]
fn (ReLULayer[T]) forward #
fn (layer &ReLULayer[T]) forward(mut input autograd.Variable[T]) !&autograd.Variable[T]
fn (SigmoidLayer[T]) output_shape #
fn (layer &SigmoidLayer[T]) output_shape() []int
fn (SigmoidLayer[T]) variables #
fn (_ &SigmoidLayer[T]) variables() []&autograd.Variable[T]
fn (SigmoidLayer[T]) forward #
fn (layer &SigmoidLayer[T]) forward(mut input autograd.Variable[T]) !&autograd.Variable[T]
struct DropoutLayer #
struct DropoutLayer[T] {
output_shape []int
prob f64
}
DropoutLayer is a dropout layer.
struct DropoutLayerConfig #
@[params]
struct DropoutLayerConfig {
prob f64 = 0.5
}
struct EluLayer #
struct EluLayer[T] {
output_shape []int
alpha f64
}
EluLayer is an activation layer that applies the element-wise function f(x) = x > 0 ? x : alpha * (exp(x) - 1)
struct EluLayerConfig #
@[params]
struct EluLayerConfig {
alpha f64 = 0.01
}
struct FlattenLayer #
struct FlattenLayer[T] {
shape []int
}
FlattenLayer is a layer
struct InputLayer #
struct InputLayer[T] {
shape []int
}
InputLayer is a layer that takes a single input tensor and returns the same tensor.
This layer is used as the first layer in a model.
struct LeakyReluLayer #
struct LeakyReluLayer[T] {
output_shape []int
}
LeakyReluLayer is an activation layer that applies the leaky elu function to the input.
struct LinearLayer #
struct LinearLayer[T] {
weights &autograd.Variable[T] = unsafe { nil }
bias &autograd.Variable[T] = unsafe { nil }
}
LinearLayer is a layer that applies a linear transformation to its input.
struct MaxPool2DLayer #
struct MaxPool2DLayer[T] {
input_shape []int
kernel []int
padding []int
stride []int
}
MaxPool2DLayer is a layer that implements the maxpooling operation.
struct ReLULayer #
struct ReLULayer[T] {
output_shape []int
}
ReLULayer is a layer that applies the rectified linear unit function element-wise.
struct SigmoidLayer #
struct SigmoidLayer[T] {
output_shape []int
}
SigmoidLayer is a layer that applies the sigmoid function to its input.
- fn dropout_layer
- fn elu_layer
- fn flatten_layer
- fn input_layer
- fn leaky_relu_layer
- fn linear_layer
- fn maxpool2d_layer
- fn relu_layer
- fn sigmoid_layer
- type DropoutLayer[T]
- type EluLayer[T]
- type FlattenLayer[T]
- type InputLayer[T]
- type LeakyReluLayer[T]
- type LinearLayer[T]
- type MaxPool2DLayer[T]
- type ReLULayer[T]
- type SigmoidLayer[T]
- struct DropoutLayer
- struct DropoutLayerConfig
- struct EluLayer
- struct EluLayerConfig
- struct FlattenLayer
- struct InputLayer
- struct LeakyReluLayer
- struct LinearLayer
- struct MaxPool2DLayer
- struct ReLULayer
- struct SigmoidLayer