nn.types #
interface Layer #
interface Layer[T] {
output_shape() []int
variables() []&autograd.Variable[T]
forward(mut input autograd.Variable[T]) !&autograd.Variable[T]
}
Layer is a generic interface for a neural network layer.
interface Loss #
interface Loss {
// loss(input &autograd.Variable, target &vtl.Tensor) &autograd.Variable
}
Loss is a generic interface for loss functions.
interface Optimizer #
interface Optimizer[T] {
mut:
params []&autograd.Variable[T]
learning_rate f64
update() !
build_params(layers Layer[T])
}
Optimizer is a generic interface for all optimizers.